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1 Introduction

Much of operations research and management science practice centers on utilizing available data to

gain insight about a phenomenon, predict future performance, and instantiate optimization and simu-

lation models. The process intersects several disciplines. Computer scientists refer to it as “learning.”

Statisticians talk about “data analysis,” “regression,” and “inference.” At a fundamental level, the

process relates to function approximation theory of mathematics, which has a long and prestigious

history. Initially, polynomial-type approximations and generalized Fourier series were the mainstay of

approximation theory both at the theoretical and computational levels. With the advent of digital

computers, piecewise polynomials in the form of splines became computationally tractable and offered

the possibility of much more accurate and stable approximations.

Although observed data about a phenomenon receives the primal attention, at least in theoretical

studies, additional information derives from a much wider range of sources. Data is never obtained in

a vacuum, but rather in a context that provides external information in a variety of ways. Physical

laws about the phenomenon may dictate that a regression line is increasing. Asymptotic theory could

indicate that a probability density function is “nearly” normal. An analyst’s experience gives a host of

“soft” information, maybe about ranges of possible values, signs of correlations, and number of modes.

It is essential, especially when the data is limited, corrupted, and otherwise deficient, to utilize all

available information, both from data and external sources. This is intuitively understood and widely

exploited in practice. However, the theoretical foundation and computational tools for carrying out this

process are incomplete. In this tutorial, we describe recent efforts to remedy the situation through the

formulation of optimization problems and the examination of such problems via variational analysis.

Specifically, we address the problem of how to

identify a function that best represents data and also satisfies information-driven constraints.

The problem arises broadly in curve fitting, interpolation, regression, density estimation, and numerous

other contexts. In §2, we describe applications in the financial and commodity markets, and list several

others. Numerical examples are given in §6. The information-driven constraints are formulated based

on external information as well as the data, and come in a multitude of forms as illustrated below. The

“best” is quantified by a criterion that could be least-squares, maximum likelihood, minimum error

measure, etc. We refer to this problem as the function identification problem (FIP).

The generality of FIP and its central position in a wide array of quantitative fields give rise, natu-

rally, to a truly immense literature on the subject. We make no attempt to present a comprehensive

treatment, but instead offer a biased view grown out of our gradual realization of the central role of

variational analysis in problems of this kind. We formulate FIP as a constrained infinite-dimensional

optimization problem that represents an actual problem. Incomplete information and simplifications

introduced for computational reasons lead to approximate optimization problems. These problems are

subsequently solved by standard, or possibly specialized, optimization algorithms to obtain best fits,
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estimates, and approximations. We then rely on variational analysis to examine whether the solutions

of the approximate problems are indeed approximations of solutions of the actual problem, study as-

sociated convergence rates, and obtain other insights. We refer to solutions of an actual problem as

actual functions.

Since determining an arbitrary function requires pinning down an infinite number of parameters, an un-

avoidable simplification comes from replacing such functions by simpler ones that are fully characterized

by a finite number of parameters. The consideration of simple, but hopefully representative, functions

is of course common in linear regression, parametric density estimation, interpolation, and many other

areas. Epi-splines are newly developed piecewise polynomial functions, described by a finite number

of parameters, that are exceptionally flexible. In fact, epi-splines approximate essentially any function

one can reasonably expect to encounter in practice, including those with discontinuities, unbounded

derivatives, and even the function values −∞ and ∞. We provide an introduction to epi-splines and

their many applications; see [22, 21, 20] and reference therein for further details.

The remaining of the overview is organized as follows. §2 provides a glimpse of the many applications

served by epi-spline technology. The mathematical formulation of FIP and definition of epi-splines are

given in §3. The examination of FIP relies on variational analysis, with pertinent facts reviewed in §4.
§5 summarizes theoretical results that justify the application of epi-spline technology. The tutorial ends

in §6 with numerical examples.

2 Applications

Despite their recent discovery, epi-splines are applied in numerous areas. The first explicit use of epi-

splines, under the name epi-curves, was in the context of deriving the zero-curves associated with a

family of financial instruments [28, 27]; EpiRisk Research used it to build interest rates and currency

exchange models and this has now also been packaged by independent software providers. §2.2 provides

an illustration. In the energy domain, epi-splines are used to compute day-ahead forecasts of electricity

(load) demand [13, 16]. In fact, there epi-splines are the main tools for building a stochastic process

that not only provide a point forecast, but conditional distributions of demand for a 24-hour period.

The situation is similar in forecasting of commodity prices, where epi-splines result in remarkably ac-

curate estimates of copper prices [29]. Epi-splines are well-suited for probability density estimation,

especially in the context of little data [7, 25, 22]. Uncertainty quantification and simulation input and

output analysis are applications that directly benefit from the epi-spline technology for density estima-

tion [19, 24]. Variograms are central tools in spatial statistics and preliminary tests show the promise

of epi-splines also in that area [21].

Initial efforts on epi-splines centered on functions defined on a compact subset of the real line; see [21]

for an overview. Although this covers many important applications, higher dimensions undoubtedly

arise too. Initial efforts in image reconstruction [25, 20], density estimation [25, 20], response surface
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Figure 1: Curve fitting with polynomial of degree 5.

building [20], and graph models show the possibilities (§2.4). In this section, we provide a few examples

that help motivate the analysis of FIP, with additional ones furnished by §6.

2.1 Curve Fitting

An elementary example from curve fitting highlights central components of FIP. Figure 1 illustrates

20 data points and plots a least-squares approximating 5th-degree polynomial. The polynomial fit is

clearly too coarse, with polynomials of other degrees resulting in even worse approximations. This

was early recognized and was a major motivation for the development of fitting procedures based on

piecewise polynomials, specifically splines [23]. We fit the data relying on four such procedures. Each

one assumes, implicitly, that the actual function belongs to a particular family of functions and relies

on a specific fitting criterion. The first three assume that the function is continuous whereas the last

one allows for a potential discontinuity at x = 0.525. We begin by relying on common cubic spline

fitting. The solid line in Figure 2 plots the cubic interpolating spline with the usual Lagrangian end

conditions whereas the dashed line is the least-squares cubic smoothing spline with smoothing penalty

1 · 10−4 assigned to the second-order derivative term. The fits improve over the polynomial fit, though

the “smoothness” of the smoothing spline curve depends on the choice of penalty.

The final two procedures rely on epi-splines built from second-degree polynomials. Suppose that in

addition to the data, the analyst believes that the actual function is continuously differentiable, with

second-order derivatives in the range [−100, 100]. This external information forms constraints on the

allowable functions that together with a least-squares criterion give the dashed line in Figure 3. The

epi-spline line resembles the smoothing spline of Figure 2, with the former having a slightly better fit

at some points. The smoothing spline is a result of minimizing squared error plus a weighted integral of

second-order derivatives. The epi-spline simply minimizes the squared error, but accounts for (point-
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Figure 2: Cubic interpolating and smoothing spline fits.

wise) bounds on the second-order derivatives.

Suppose that external information further indicates that there may be a discontinuity around x = 0.525.

Then an epi-spline illustrated by the solid line in Figure 3 yields what appears to be the best fit seen

so far. Although not pursued further here, other epi-splines could be calculated that satisfy additional

constraints derived from external information about concavity and other jumps, or by collecting further

data points. A sequence of such problems can be thought of as approximations of an actual FIP

involving an infinite number of data points and general functions. Below we discuss justifications

for such approximations, especially those involving replacing general functions under consideration by

epi-splines.

2.2 Financial Curves

It is standard procedure in financial engineering to use a family of similar instruments consisting of

Treasury bonds, annuities, commercial papers and/or related assets to estimate their zero-curves in-

cluding the spot rate curve, the forward rate curve, and the discount factor curve. These curves are

intimately related as any one of them can be derived from knowing any one of the others; see [28, 27]

and references therein. Here, we consider the problem of finding a discount factor curve d for the sake

of illustration.

Suppose that for each instrument i = 1, 2, ..., I, there is a cash-flow yielding

cash payments pi0, p
i
1, . . . , p

i
Ni

at points in time ti0, t
i
1, . . . , t

i
Ni
, respectively.

The first one of these “payments” usually corresponds to purchasing price, the remaining ones to the

income generated; so, pi0 is usually negative whereas the remaining ones are positive. To simplify the
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Figure 3: Second-order epi-spline fits with and without discontinuity.

notation, we let ti0 = 0 (today) and T ≥ tiNi
. For example, T could related to the longest maturity time

of all the instruments. Since one can reasonably assume that the discounted value of future payments

balances the initial expense or, more generally, the signed, discounted payment stream equals zero,

identifying a discount factor curve amounts to finding a real-valued function d on [0, T ] with

Ni
∑

j=0

d(tij)p
i
j = 0 for all i = 1, 2, ..., I.

External information about the nature of discount factor curves dictates further that d(0) = 1 (the

value of money today is its face value), d ≥ 0 (discount factors are nonnegative numbers), and the

derivative d′ ≤ 0 (discount factors cannot increase with time). Additional information that relates to

the desirable properties of the associated forward rates curves, cf, [27, §1], justifies the restrictions to

smooth curves and we therefore also require that d is continuously differentiable. Since ensuring that

all of the above I equations are satisfied may not be possible due to inconsistent pricing in the markets,

we formulate the problem in terms of a norm-minimizing optimization problem:

minimize

∥

∥

∥

∥

∥

∥





N1
∑

j=0

d(t1j )p
1
j , ...,

NI
∑

j=0

d(tIj )p
I
j





∥

∥

∥

∥

∥

∥

such that d(0) = 1, d ≥ 0, d′ ≤ 0,

where it is implicitly assumed that d is a continuously differentiable function and ‖ · ‖ is a well-chosen

norm. The problem is clearly a FIP, with constraints derived from insight about the situation.

2.3 Commodity Price Forecasts

A more complicated example arises in commodity pricing. In [29, §3], epi-spline technology builds a

stochastic process for short-term copper prices, say for the next 6-12 months. The effort relies on a
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Figure 4: Epi-spline estimates of copper prices (a) with and (b) without future contract information.

common model for the evolution of copper prices as well as closely related quantities such as interest

rates and exchange rates based on geometric Brownian motion. The drift and volatility terms in the

corresponding stochastic differential equation, however, are estimated using epi-splines. The available

information is historical prices, see, for example, the line in Figure 4(a) that stretches across the figure,

where “today” is month 0 so that prices only up to that time is available. Moreover, we also know

current prices of future contracts for copper deliveries as well as for various interest rate and currency

exchange instruments.

Epi-spline technology enters then twice. First, prices of future contracts are converted into (implied

future) spot prices. This is achieved by computing a discount factor curve in the manner described

above and then converting it into a spot rate curve using standard expressions. Second, the historical

prices, today’s price, and the spot market prices just computed for, say, the next 9 months provide

data that is fitted using a second-order epi-spline under the additional external information that it is

continuously differentiable. The resulting fit provides estimated drift terms for the stochastic differen-

tial equation. The solid line in Figure 4(a) starting at month zero shows the price drift for the next

12 months. We note that in this approach the initial conditions of the process is not today’s observed

price. A justification for proceeding in this fashion is that one should view today’s (observed) spot

price as the “actual” spot price perturbed by some noise; empirical calculations carried out in [29, §6.1]
confirm that this approach yields much better results.

Finally, the volatility parameters of the process are obtained by a least-square fit of the covariance after

adjusting the observed historical prices and the forecasted spot prices by subtracting their estimated

expectation; for more about this approach cf. [29]. Figure 4(a) illustrates the volatility with dotted lines

corresponding to the 95% confidence interval for the process at each point in time. Figure 4(b) provides

similar results, but without using epi-spline technology to convert information about future contracts

into implied future spot prices. It is apparent that including this additional external information

dramatically improves the quality of the estimates.
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2.4 Density Estimation on Graphs

A final illustration is provided by a problem in graph theory. There is a rapidly growing literature on

models for graphs that rely on exponential families of probability density functions

hβ(G) = exp

(

I
∑

i=1

βiTi(G) + cβ

)

to describe the likelihood of a graph G characterized by its number of edges (T1(G)), triangles (T2(G)),

stars (T3(G)), cycles (T4(G)), etc., with β = (β1, β2, ..., βI ) being a vector of parameters and cβ a nor-

malization coefficient; see [8] and references therein. From observed data in the form of a collection

of graphs, there are significant challenges to estimate the parameters β. In [8], we find an approach

that relies on graph limits in the sense of Lovász and large-deviation results for random graphs, and

leads to an infinite-dimensional problem whose optimal value is an estimate of the crucial normalization

constant cβ.

Specifically, following [8], we define

ψ0(f) =

∫ 1

0

∫ 1

0

1
2f(x1, x2) log f(x1, x2) +

1
2 (1− f(x1, x2)) log(1− f(x1, x2))dx1dx2

ψ1(f) =

∫ 1

0

∫ 1

0
f(x1, x2)dx1dx2

ψ2(f) =

∫ 1

0

∫ 1

0

∫ 1

0
f(x1, x2)f(x2, x3)f(x1, x3)dx1dx2dx3.

The infinite-dimensional problem is then to

minimize ψ0(f)− β1ψ1(f)− β2ψ2(f) such that f symmetric and 0 ≤ f ≤ 1

over all measurable functions on [0, 1]2. Here, symmetric means that f(x1, x2) = f(x2, x1) for all

(x1, x2) ∈ [0, 1]2. An approach relying on epi-splines for solving this problem is currently under inves-

tigation. Figure 5 provides an example of a minimizing function f for the choice β1 = 4 and β2 = −7.

This problem only indirectly relates to “fitting data,” and shows the breath of possible applications of

the epi-spline technology.

3 Problem Formulations

As indicated above, FIP is an optimization problem and we now turn to its formulation. In particular,

we make distinction between an actual, conceptual problem and an approximate problem to be solved

computationally. The section ends with formulation of constraints derived from external information

and practical guidelines.
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3.1 Actual Problem

We formulate FIP as the problem of determining a function f defined on IRn that minimizes some

criterion given by a functional ψ, while also satisfying constraints given by a feasible set F . The problem

may be conceptual, involving information not available and requiring operations not implementable

during its solution. This “actual problem” therefore takes the form

Actual Problem (P ) : minψ(f) such that f ∈ F ⊆ F ,

where F is a space of functions. The criterion functional ψ could be, for example,

ψ(f) =
J
∑

j=1

(yj − f(xj))2

ψ(f) =

J
∑

j=1

|yj − f(xj)|

ψ(f) = max
j=1,...,J

|yj − f(xj)|

where {(xj , yj)}Jj=1 is observed data. These terms express errors from the observed data as measured

by mean squared, mean absolute, and max absolute errors, respectively. More generally for a known

reference function f0, we may have

ψ(f) = ‖f − f0‖,

8



where ‖ · ‖ is a norm defined on the space of functions under consideration. For random variables X

and Y , with X n-dimensional, expressing possible “future” data, examples of criteria are

ψ(f) = E[f(X)]

ψ(f) = E[max{0, Y − f(X)}]/(1 − α) + E[Y − f(X)]

ψ(f) = E(Y − f(X)).

The first example focuses on the expected value of the random variable f(X) as arises in density

estimation using log-likelihood maximization and an exponential transformation; see [22]. The second

expression states the Koenker-Bassett error used in quantile regression, with α ∈ [0, 1). The third

gives the error between random variables Y and f(X) as expressed by an error measure, of which the

Koenker-Bassett and mean squared errors are special cases; see [17] for other examples that lead to

many different types of generalized regression. Two additional examples are furnished by

ψ(f) =

∫

‖f ′′(x)‖2dx

ψ(f) = min
x
f(x),

which do not directly relate to the data. The first one is common in applications such as interpolation.

Here, the criterion is to obtain a function with minimum “variation” as measured by the integrated

squared-value of the second-order derivative or, more generally, a squared norm of the Hessian matrix.

The last example illustrates the versatility of the framework as it allows for criteria functionals that

themselves involve optimization.

The feasible region F likewise comes in a large variety of forms. The restrictions to functions that are

smooth, convex, monotone, log-concave2 naturally arise in applications. For example, an analyst may be

rather certain that increasing input results in increasing output in a regression analysis. Consequently,

she should restrict the consideration to increasing functions. The prevalence of “normal-looking” prob-

ability density functions in an area may convince an analyst to only consider log-concave densities,

which have only one mode. However, the possibilities extend much further. The functions of interest

in an application may be known to attain specific values at a finite number of points, or be zero, −∞,

or ∞ outside a certain (compact) set. The functions could be nonsmooth, but with subgradients that

are contained in certain sets and possess specific properties, or could be within some distance from a

reference function. In fact, any one application may need to contend with many or all of this external

information at the same time. At the end of this section, we give some concrete examples of how these

pieces of information can be formulated mathematically within an epi-spline framework. We refer, for

example, to [22] for illustrations of the effect of external information in improving estimates.

The distinction between a criterion functional and constraints defining the feasible set is less important

than it first appears. It is well-known in practical application of optimization models and methods that

2We recall that a function f is log-concave if log f is concave.
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an objective function can be converted into a constraint and a constraint function can take the place

as objective function with computational and modeling benefits. However, some requirements such as

continuity, convexity, and differentiability are most naturally formulated as constraints. Quantifications

of “goodness-of-fit” lend themselves as criteria functionals. Typically, application-specific conditions

indicate the most beneficial formulation, with the opportunity to include arbitrary constraints in (P )

offering significant flexibility.

Two classical examples provide additional context. A problem of smooth interpolation aims to deter-

mine a function f defined on IR that

minimizes

∫

f ′′(x)2dx such that f(xj) = yj for all j = 1, 2..., J,

i.e., to determine the “smoothest” function that interpolates the points (xj , yj), j = 1, 2, ..., J . When

restricted to functions in a certain Sobolev space, the unique solution of this problem is a cubic spline3

[15]; see also [11, 1] for numerous extensions. The solid line in Figure 2 illustrates such a cubic spline

for the data set of Subsection 2.1. Cubic smoothing splines balance interpolation of the data with

“smoothness” of the curve and arise as optimal solutions of

min
J
∑

j=1

(yj − f(xj))2 + λ

∫

f ′′(x)2dx,

where λ ≥ 0 is a smoothing penalty [26, 12]. The dashed line of Figure 2 provides an illustration for

λ = 1 · 10−4. Other “regularizations” by ℓ1- and ℓ0-norms lead to similar problems. It is clear that

these examples are special cases of the actual problem (P ).

In the interpolation and smoothing spline examples, optimal solutions are automatically cubic splines

and the choice of function space to consider falls naturally to a Sobolev space to ensure existence and

integrability of second-order derivatives. The general case (P ) requires more care to ensure a sufficiently

rich class of functions that can capture (essentially) all possibilities arising in practice. We would like

to allow for discontinuous functions, functions with arbitrary rates of growth, for example unbounded

derivatives, and functions that assume the values −∞ and ∞. Discontinuities certainly arise in the

nonparametric estimation of densities, in response surface building, and in curve fitting. Curve fitting

may also lead to functions that grow too fast to be integrable in some sense. The possibility of function

values −∞ and ∞ may be needed when implicit constraints are present, for example in curve fitting of

functions with effective domain less than the whole domain; it may also arise in applications involving

rescaling, exponential rescaling for instance, where zero values need to be allowed. Consequently,

we let the space of function under consideration, F , be the set, or possibly a subset, of lower semi-

continuous (lsc) functions from IRn to the extended real line IR := IR ∪ {−∞,∞}, excluding the trivial

function f ≡ ∞, which is identical to infinity everywhere. The left portion of Figure 6 illustrates a

3Cubic splines are piecewise polynomial functions of third degree that are twice continuously differentiable.
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lsc function on IR. As shown, a lsc function may be extended real-valued with values −∞ and ∞, and

have discontinuities, at which point the function “jumps down.” The formal definition of a lsc function

requires additional notation. For any f on IRn, we let

lim inf
x′→x

f(x′) := lim
δ↓0

[

inf
x′∈IB(x,δ)

f(x′)

]

,

where IB(x, δ) := {x′ ∈ IRn | ‖x′ − x‖ ≤ δ} is the ball of radius δ centered at x. Informally, we think of

lim infx′→x f(x
′) as the smallest value of f “near” x. Then,

a function f is lsc at a point x if lim inf
x′→x

f(x′) ≥ f(x).

A function is lsc if it is lsc for all x ∈ IRn. We denote by lsc-fcns(IRn) this set of lsc functions, excluding

f ≡ ∞. The lsc functions are complemented by upper semi-continuous functions that “jumps up” at

points of discontinuity, as illustrated by the right portion of Figure 6. The definition is similar. In fact,

the lsc functions yield the upper semi-continuous functions after a sign change. A parallel development

with such functions is therefore mostly superfluous.

Since external information may indicate that the consideration of, for example, continuous or contin-

uously differentiable functions suffices, not all applications require the full generality of lsc-fcns(IRn).

We therefore let F in the actual problem be equal to lsc-fcns(IRn) or an appropriate subset. The choice

of representing external information by the constraint set F , or, alternatively, in the definition of the

space of functions F , is purely a technicality.

3.2 Approximations

The actual problem (P ) rarely admits closed form solutions and computational strategies become es-

sential. However, optimization over functions instead of over a finite number of parameters is not

implementable in a computational method. The criterion functional may also involve integrals and the

number of constraints could be infinite, both requiring some sort of approximation. The actual problem

11



s(x) 

m1 m2 m3

x

mN-1m4 m5 m6 …

Figure 7: Mesh and epi-spline on IR.

could also represent an “ideal” situation with full information that should be contrasted with a problem

involving only observed data. Regardless of the situation, there is a need for considering approxima-

tions of (P ). We start with defining approximations of lsc functions in terms of simpler functions called

epi-splines that involve only a finite number of parameters.

Epi-splines are defined on IRn, but we first present the one-dimensional case for simplicity.

One-dimensional epi-splines on a mesh. A mesh is a finite number of points

−∞ = m0 < m1 < m2 < ..., < mN−1 < mN = ∞

on the real line as illustrated by Figure 7. An epi-spline4 of order p on such a mesh is a real-valued

function s that

on each open interval (mk−1,mk), k = 1, ..., N , is polynomial of degree p and

for every x ∈ IR, has s(x) = min

{

lim
t↓0

s(x+ t), lim
t↓0

s(x− t)

}

.

Figure 7 shows an epi-spline of second-order, i.e., p = 2, which on each open interval (mk−1,mk) is a

second-degree polynomial. An epi-spline of order p = 0 is a piecewise constant function and one of order

p = 1 is a piecewise affine function with possibilities of jumps at the mesh-points m1,m2, ...,mN−1.

The second condition ensures that the value s(x) is the smaller of the left and right limits of s at x,

4In [20] these epi-splines are called lsc epi-splines, but here we exclusively focus on such epi-splines and the prefix is
therefore superfluous. Basic epi-splines defined only on a compact interval of IR is given in [21].
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which, of course, exist since s is continuous (polynomial) except at the mesh-points. This ensures that

s is lsc.

Epi-splines are structurally related to splines, but are more flexible. In fact, interest in splines of order p

with less than the standard (p−1)-times continuous differentiability at their “knots” goes back to Curry

and Schoenberg [9, 10]. However, mesh-points m1, . . . ,mN−1 should not be identified with the knots of

such splines since no assumptions are made about information being available at mesh-points and no

continuity requirements are placed on epi-splines at (precisely) these mesh-points. In fact, the partition

can be selected completely freely. Continuity and any other condition can still be ensured when needed

through constraints in (P ), as discussed at the end of this section. Since from an etymological viewpoint

the (Greek) prefix “epi” can be interpreted as meaning “higher” or “better,” the term epi-splines is cer-

tainly appropriate for these more “general” splines. In §4 and §5, we see that the analysis of epi-splines
relies heavily on epi-convergence and the epi-topology, which provides further justification for the name.

Higher-dimensional epi-splines. Epi-splines in higher dimensions follow similarly, but require ad-

ditional notation. We denote by clS the closure of a subset S of a Euclidean space. A finite collection

R1, R2, ..., RN of open subsets of IRn is a partition of IRn if

N
⋃

k=1

clRk = IRn and Rk ∩Rl = ∅ for all k 6= l.

There are clearly many possible partitions, but, in practice, those consisting of rectangular boxes and

simplexes appear to suffice. We adopt a “total degree” convention and say that a polynomial in n

dimensions is of total degree p if it is expressed as a finite sum of polynomial terms, each having the sum

of the powers of the variables being no larger than p. We note that the total number of terms in such

a polynomial is at most (n + p)!/(n!p!). Another convention would have had only minor consequences

for the following exposition.

An epi-spline s of order p defined on IRn with partition R = {Rk}Nk=1 is a real-valued function that

on each Rk, k = 1, ..., N , is polynomial of total degree p and

for every x ∈ IRn, has s(x) = lim inf
x′→x

s(x′).

As in the one-dimensional case, an epi-spline is polynomial on open sets. The second condition ensures

that it is also lsc by defining the value at boundary points of the partition appropriately. Figure 8

illustrates an epi-spline of order two on IR2. The partition consists of rectangles. The family of all

epi-splines of order p on IRn with partition R is denoted by e-splpn(R). Since an s ∈ e-splpn(R), with

R = {Rk}Nk=1, involves N polynomials of total order p, it is fully characterized by

ne := N(n+ p)!/(n!p!) (1)

parameters, which may be large but finite.
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Figure 8: Epi-spline on IR2.

Approximate problem. To also allow for the possibility of approximations in the criterion functional

ψ and the feasible set F , we define an approximate criterion ψν and an approximate feasible set F ν ⊂ F .

Relying on epi-splines, we define the approximate functions under consideration to be

Sν ⊆ e-splp
ν

n (Rν) ∩ F .

The superscript ν = 1, 2, ... indicates that a family of approximations can be considered, possibly with

gradually more refined partition Rν , for example. These approximations lead to an

Approximate Problem (P ν) : minψν(s) such that s ∈ F ν ∩ Sν

that approximates the actual problem (P ).

(P ν) is an optimization problem over functions, but they are all epi-splines and therefore representable

by a finite number of parameters. Consequently, (P ν) is a finite-dimensional optimization problem that

is solved by optimizing over the Nν(n + pν)!/(n!pν !) (real) parameters describing the family of epi-

splines under consideration. Here, Nν is the number of open sets in the partition Rν of IRn. We refer

to an optimization problem over such parameters as a parametric optimization problem corresponding

to (P ν); see §5 for further discussion. Under the assumption that additional complications are removed

by approximations of the criterion functional and feasible set, the solution of parametric optimization

problems can be obtained by standard algorithms, or possibly more efficiently by specialized algorithms

in certain cases.
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With the introduction of approximations, we need to address the possibility that solutions of approx-

imate problems (P ν) may not relate to those of the actual problem (P ). Under what conditions will

solutions of (P ν) be approximate solutions of (P )? More fundamentally, can we approximate any lsc

function by epi-splines? These questions require the discussion of approximation theory of optimization

problems as reviewed in Section 4, with answers provided in Section 5. We end this section, however,

with examples of external information and practical guidelines.

3.3 External Information

External information needs to be converted into mathematical forms and included as constraints in the

parametric optimization problem corresponding to (P ν). The formulation of such constraints depends

on the representation of the polynomials in an epi-spline. Of course, there are many possible represen-

tations, some of which are known to be numerically more beneficial than others. Here, we only consider

one-dimensional epi-splines and the simple representation

qk(x) = ak0 + ak1x+ ak2x
2 + ...+ akpx

p, x ∈ IR, (2)

of the polynomial describing an epi-spline on the interval (mk−1,mk), k = 1, 2, ..., N . With N intervals

partitioning IR, the epi-spline is defined by N such polynomials with a total of N(p + 1) parameters.

We next give some examples of external information and the formulation of corresponding constraints

using this representation; see [20] for extensions to higher dimensions and [22] for constraints related

to density estimation.

Continuity. An epi-spline is continuous if the polynomials q1, q2, ..., qN defining the epi-spline coincide

at the mesh-points m1, m2, ..., mN−1. This is easily achieved by the constraints

ak0 + ak1mk + ak2m
2
k + ...+ akpm

p
k = ak+1

0 + ak+1
1 mk + ak+1

2 m2
k + ...+ ak+1

p mp
k, k = 1, 2, ..., N − 1.

Of course, this constraint could be enforced only at a subset of the mesh-points to allow for disconti-

nuities in some areas, but not in others as done in Figure 2.

Continuous differentiability. An epi-spline is continuously differentiable if continuous, ensured by

the above equations, and the derivatives of the polynomials q1, q2, ..., qN coincide at the mesh-points

m1, m2, ..., mN−1. This is achieved by the constraints

ak1 + 2ak2mk + ...+ pakpm
p−1
k = ak+1

1 + 2ak+1
2 mk + ...+ pak+1

p mp−1
k , k = 1, 2, ..., N − 1,

where we assume that p ≥ 1. Continuous differentiability is automatic for a continuous epi-spline of

order p = 0.

Fixed values. We ensure that an epi-spline satisfies the function value s(x) on a set Sk ⊂ (mk−1,mk)

by the constraints

ak0 + ak1x+ ak2x
2 + ...+ akpx

p = s(x), x ∈ Sk.
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This may at first give the impression that an infinite number of constraints is needed. However, if Sk
has more than p+1 distinct points, then it suffices to select p+1 distinct points at which to enforce the

constraints. This follows from the fact that a polynomial of degree p is uniquely defined by its value at

p+ 1 points. The equality can naturally be replaced by inequality if only bounds are available. More-

over, if the values of an epi-spline is of no interest beyond a certain mesh-point, then the polynomials

defining the epi-spline beyond that point is of course immaterial and can be ignored.

Monotonicity. We ensure that an epi-spline of order p ≥ 1 is nonincreasing by the constraints

ak1 + 2ak2x+ ...+ pakpx
p−1 ≤ 0, x ∈ (mk−1,mk), k = 1, 2, ..., N, and

ak0 + ak1mk + ak2m
2
k + ...+ akpm

p
k ≥ ak+1

0 + ak+1
1 mk + ak+1

2 m2
k + ...+ ak+1

p mp
k, k = 1, 2, ..., N − 1.

The first set of constraints ensures that the polynomials making up an epi-spline are nonincreasing on

the intervals on which they define the epi-spline. The second set imposes the restriction that when

moving from left to right, the epi-spline must not jump up at mesh-points. The second requirement is

automatically satisfied for continuous epi-splines. In the case of p = 2, the first condition simplifies to

the two constraints

ak1 + 2ak2mk−1 ≤ 0 and ak1 + 2ak2mk ≤ 0

as, in that case, the derivative of the epi-spline is simply linear. For any p, the first and the second

conditions hold if

ak1 + 2ak2mk + ...+ pakpm
p−1
k ≤ 0

under the additional assumption that the epi-spline is convex since then the epi-spline is continuous

with a nondecreasing (left/right-sided) derivative.

Convexity. We ensure that an epi-spline is convex by the continuity constraints above and

2ak2 + ...+ p(p− 1)akpx
p−2 ≥ 0, x ∈ (mk−1,mk), k = 1, 2, ..., N, and

ak1mk + 2ak2mk + ...+ pakpm
p−1
k ≤ ak+1

1 mk + 2ak+1
2 mk + ...+ pak+1

p mp−1
k , k = 1, 2, ..., N − 1.

The first set of constraints ensures that the second-order derivative of the polynomials constituting an

epi-spline are nonnegative and therefore convex on the intervals on which they define the epi-spline.

For p < 2, the constraints are superfluous. The second set imposes the restriction that when moving

from left to right, the derivative of the epi-spline must not jump down at mesh-points. The second

requirement is automatically satisfied for continuously differentiable epi-splines and can be ignored for

the case p = 0. If an epi-spline is of second order, then the first set of constraints simplifies to ak2 ≥ 0

for k = 1, ..., N . If p = 3, the first set of constraints simplifies to

2ak2 + 6ak3mk−1 ≥ 0 and 2ak2 + 6ak3mk ≥ 0

because then the second-order derivative is simply linear.
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Log-concavity and modality. We recall that the composite function h(x) = e−s(x), x ∈ IRn is

log-concave if and only if s is convex. Consequently, it can be beneficial to use such an exponential

transformation of an epi-spline when log-concavity is desirable as in the case of probability density esti-

mation; see [22]. In this case, the convexity constraints above would ensure log-concavity. Log-concavity

implies unimodality. However, the converse is not true. It is more complicated to ensure unimodality

and not necessarily log-concavity. In the case of a continuous function, one could ensure unimodality

by designating one mesh point mk′ as the mode, and then constraining the function to be increasing

and decreasing on (mk′−1,mk′) and (mk′ ,mk′+1), respectively, and nondecreasing on [m0,mk′−1) and

nonincreasing on (mk′+1,mN ]. Solving the resulting problem gives a unimodal candidate function. The

process is repeated for alternative mode locations mk, k = 0, 1, ..., N , k 6= k′, and the function with

the best criterion functional is retained as the optimal function. K-modality is achieved similarly by

partitioning [m0,mN ] into K intervals, with each having a unimodal constraint. The process must be

repeated for each partition of interest. To specify that certain mk are modes is achieved by ensuring

that the function is increasing and decreasing on (mk−1,mk) and (mk,mk+1), respectively.

We note that the above constraints, and many similar ones, are mostly linear in the parameters describ-

ing an epi-spline. Consequently, their inclusion in a parametric optimization problem corresponding to

(P ν) requires little additional computational effort.

3.4 Implementation Guidelines

The formulation and implementation of an approximate problem (P ν) in a specific context require

the choice of order p and partition R. The order is usually easy to choose as the extensive experi-

ence with classical polynomial splines over more than half a century strongly indicates that low-order

splines are preferred to higher order ones as they avoid the oscillatory behavior of high-degree polyno-

mials. Typically, order two or three is recommended. However, the consideration of derivatives might

dictate slightly higher orders. For example, external information about a k-th derivative of the actual

function dictates that at least order k or maybe k+1 needs to be used; see [21, 20] for further discussion.

The choice of mesh (in one dimension) is usually straightforward; one should in view of the following

theory select a mesh as fine as is computationally possible. However, when computing times are im-

portant or external information indicates that the actual function is “nearly polynomial,” one could

consider coarse meshes. The exact location of mesh points could be dictated by external information,

for example about points of discontinuity. When no relevant information is available, a choice with

evenly dispersed mesh points is natural. The situation in higher dimensions is more complex with the

multitude of possible partitions. Unless special external information is available, convenience suggests

polyhedral partitions, especially boxes and simplexes. In particular, simplex partitions appear versatile

as they are compatible with continuous epi-splines in all dimensions even for order p = 1; see [20].

Another issue is the representation of polynomials, with (2) being only one possibility. In fact, we know
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Figure 9: Epi-graph of a function f on IR.

that this representation leads to poorly conditioned problems in certain contexts of interpolation and

fitting. Although we have found no need for going beyond this representation, or one that is normalized

with respect to mesh point locations, in the applications examined thus far, we foresee that efficiencies

will accrue from further studies of this area, especially in higher dimensions.

4 Background on Epi-Convergence

The examination of epi-splines and the relationship between the actual problem (P ) and approximate

problems (P ν) rely on variational analysis and, especially, the approximation theory of optimization

problems with the notion of epi-convergence taking center stage.

In this context, it is not possible to rely on the standard pointwise and uniform convergence notions.

Pointwise does not guarantee the convergence of minimizers, e.g., f ν ≡ 1 on [0,1] except for f ν(1/ν) = 0

converges pointwise to f ≡ 1 on [0,1], but clearly the minimizers of the f ν do not converge to the set of

minimizers of f , which is [0, 1]. On the other hand, uniform convergence will guarantee the convergence

of the minimizers, but can, at best, only be satisfied when the constraint-set is not affected by the

approximation(s), e.g., f ν ≡ 0 on [0, 1 − 1/ν] does not converge uniformly to f ≡ 0 on [0,1]. One

can view epi-convergence as a one-sided (unilateral) uniform convergence notion that can handle the

challenges posed by an optimization problem and guarantees, in a way to be made precise a bit later,

the convergence of the minimizers. Here, we provide the essential components; see [18, 4] for a more

comprehensive treatment.
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Figure 10: Illustration of distances: dlρ(f, g) = δ and d̂lρ(f, g) = γ.

We view a function on IRn through its epi-graph

epi f := {(x, x0) ∈ IRn+1 | f(x) ≤ x0},

i.e., the set of points in IRn+1 that lies no lower than the graph of f , as illustrated in Figure 9. We note

that

f ∈ lsc-fcns(IRn) if and only if epi f is a nonempty closed subset of IRn+1.

Distances between such functions can therefore be based on distances between (closed) sets in IRn+1.

We start with notation and let ρIB = IB(0, ρ) be the closed ball in a Euclidean space centered at the

origin with radius ρ ≥ 0 and

d(y, S) := inf
y′∈S

‖y − y′‖

be the standard distance between a point y and a subset S of a Euclidean space. We use the notation

A+B = {a+ b | a ∈ A, b ∈ B} for the Minkowski sum of two sets A and B in a Euclidean space.

The classical Pompeiu-Hausdorff distance between sets C,D ⊂ IRn,

dl∞(C,D) := sup
y∈IRn

|d(y,C)− d(y,D)| = inf{η ≥ 0 | C ⊂ D + ηIB,D ⊂ C + ηIB}

is not useful in the present context as epi-graphs are unbounded sets and this distance is easily infin-

ity. We therefore turn to two distances that depart from the Pompeiu-Hausdorff distance in different

directions (see [2] and [18, §4.H]).
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Focusing now on epi-graphs, we first define the ρ-epi-distance between two functions f and g on IRn,

which is given by a restriction of the first formula for the Pompeiu-Hausdorff distance:

dlρ(f, g) = sup
x̄∈ρIB

|d(x̄, epi f)− d(x̄, epi g)|, ρ ≥ 0.

Obviously, dlρ(f, g) = dl∞(epi f, epi g) for ρ = ∞. As illustrated in Figure 10, dlρ(f, g) gives the largest

difference in distance between a point x̄ = (x, x0) ∈ ρIB ⊂ IRn+1 and the respective epi-graphs. In this

figure, with f(x) = ρ − γ for x > −ρ− ε and f(x) = −ρ for x ≤ −ρ− ε; g(x) = ρ for x > −ρ− δ − ε

and g(x) = −ρ for x ≤ −ρ − δ − ε; and δ + ε < ρ and ε, γ small, the point x̄ = (−ρ, 0) provides the

maximizing point, with d(x̄, epi f) = ε and d(x̄, epi g) = δ + ε. Consequently, dlρ(f, g) = δ.

The second distance, the ρ-epi-distance estimate, relies on the second formula for the Pompeiu-Hausdorff

distance, but limits the focus to the ball centered at the origin with radius ρ:

d̂lρ(f, g) = inf{η ≥ 0 | epi f ∩ ρIB ⊂ epi g + ηIB, epi g ∩ ρIB ⊂ epi f + ηIB}, ρ ≥ 0.

Again, d̂lρ(f, g) = dl∞(epi f, epi g) for ρ = ∞. Figure 10 illustrates d̂lρ, which involves “padding” the

first epi-graph so that it includes the second one, and vice versa. In this figure, epi g ∩ ρIB contains

the single point (0, ρ) which is clearly contained in epi f , and epi g only needs to be padded with γ to

ensure that epi f ∩ ρIB ⊂ epi g + γIB. Consequently, d̂lρ(f, g) = γ.

Neither dlρ nor d̂lρ is a metric on lsc-fcns(IRn). The ρ-epi-distance dlρ is a pseudo-metric, but d̂lρ is not.

Obviously, if ρIB is “small,” then dlρ(f, g) may very well be zero without f and g being equal. It is

apparent that all values of ρ need to come into play. This is accomplished in the epi-distance

dl(f, g) :=

∫ ∞

0
dlρ(f, g)e

−ρdρ,

which then leads to the following fact:

dl is a metric on the space lsc-fcns(IRn).

We say that functions f ν ∈ lsc-fcns(IRn) epi-converges to a function f ∈ lsc-fcns(IRn) if dl(f ν , f) → 0.

Epi-convergence is also characterized by dlρ and d̂lρ:

For functions f ν , f ∈ lsc-fcns(IRn) and ρ̂ ≥ 0, the following is equivalent:

dl(f ν , f) → 0

dlρ(f
ν, f) → 0 for ρ ≥ ρ̂

d̂lρ(f
ν, f) → 0 for ρ ≥ ρ̂.

The epi-distance induces the epi-topology (in topology circles referred to as the Attouch-Wets topology)

on lsc-fcns(IRn). In fact, by Theorem 7.58 of [18], (lsc-fcns 6≡∞(IRn), dl) is a complete metric space. It is

also separable and therefore a Polish space, with, in fact, epi-splines given in terms of polynomials with
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rational coefficients furnishing a countable dense subset [20]. However, lsc-fcns(IRn) is not a vector

space5 as −f 6∈ lsc-fcns(IRn) for f ∈ lsc-fcns(IRn) given by f(x) = 0 if x ∈ [0,∞)n and f(x) = 1

otherwise. We note however that it is a cone, i.e., λf ∈ lsc-fcns(IRn) for λ ≥ 0 and f ∈ lsc-fcns(IRn).

Moreover, lsc-fcns(IRn)∪{∞} is convex, where we have included the function that is infinity everywhere.

A parallel, slightly more general, development focusing on nonempty closed sets in IRn, instead of

epi-graphs of lsc functions, is also possible and leads to set convergence in the sense of Painlevé-

Kuratowski. Such convergence is characterized by dl, dlρ, and d̂lρ, similar to the above characterization

of epi-convergence, with the slight change in definition of these distances consisting of replacing epi-

graphs by closed sets; see [18, Chapter 4] and [6] for further details about topologies on closed sets.

Connections between the various distances are provided by [18, Exercise 7.60]. For example, for func-

tions f, g on IRn not identical to ∞,

(i) d̂lρ(f, g) ≤ dlρ(f, g) ≤ d̂lρ′(f, g), when ρ
′ ≥ 2ρ+max{d(0, epi f), d(0, epi g)}

(ii) dl(f, g) ≥ (1− e−ρ)|d(0, epi f)− d(0, epi g)| + e−ρdlρ(f, g)

(iii) dl(f, g) ≤ (1− e−ρ)dlρ(f, g) + e−ρ(max{d(0, epi f, d(0, epi g)} + ρ+ 1)

(iv) dlρ(f, g) = d̂lρ(f, g) for any ρ ≥ 0 if f, g convex with f(0) ≤ 0 and g(0) ≤ 0.

As is clear from these results, the distances are tied to the origin of IRn+1. Although formulae for

other “anchor” points are also possible, the simplest way of utilizing these estimates is to translate the

functions f and g favorably. Item (iv) highlights the possibilities in that direction in the case of convex

functions.

It is apparent that

dlρ(f, g) ≤ ‖f − g‖∞ := sup
x∈IRn

|f(x)− g(x)|

and since
∫∞

0 e−ρdρ = 1, that also

dl(f, g) ≤ ‖f − g‖∞.

Of course, with the possibilities of the function values −∞ and ∞, the right-hand sides may easily be

∞ making reliance on ‖·‖∞ impractical. Even for finite-valued functions, it is clear that convergence in

the epi-distance does not imply convergence in ‖ · ‖∞ as the following simple example shows. Suppose

that f ν(x) = 0 if x ≤ 0 and f ν(x) = x/ν otherwise. We also define f0(x) = 0 for all x ∈ IR; see

Figure 11. Clearly, ‖f ν − f0‖∞ = ∞ for all ν. However, for any ρ ≥ 0, dlρ(f
ν , f0) ≤ ρ/ν and therefore

dl(f ν , f0) ≤ (1/ν)
∫∞

0 ρe−ρdρ = 1/ν. Consequently, dl(f ν , f0) → 0, but ‖f ν − f0‖∞ 6→ 0.

5We define addition of functions and multiplication with a scalar in the usual “pointwise” manner. To handle extended
real-values, we adopt the conventions that ∞+a = ∞ and −∞+a = −∞ for a ∈ IR, ∞+∞ = ∞+(−∞) = −∞+∞ = ∞,
λ · ∞ = −∞ for λ < 0, 0 · ∞ = 0, and λ · ∞ = ∞ for λ > 0, and similarly for λ · (−∞).
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Figure 11: Illustration of epi-convergence without uniform convergence.

Pointwise convergence of a sequence of functions is also not equivalent to epi-convergence even if both

pointwise and epigraphical limits exist as the following simple example shows. Suppose that f ν(x) = 0

if x = 1/ν and f ν(x) = 1 otherwise. Clearly, the pointwise limit of f ν, i.e., the function defined

by limν f
ν(x) for every x, is the function that is unity everywhere. In contrast, f ν epi-converges to

the function f0 with f0(x) = 0 for x = 0 and f0(x) = 1 otherwise, i.e., dl(f ν , f0) → 0. In fact,

dlρ(f
ν , f0) = d̂lρ(f

ν , f0) = 1/ν; see Figure 12.

Specific estimates for epi-splines are provided in [20]: For s, s′ ∈ e-splpn(R), with R = {Rk}Nk=1, one has

for any ρ ≥ 0,

(i) dl(s, s′) ≤ max
k=1,...,N

sup
x∈Rk

|s(x)− s′(x)|

(ii) dlρ(s, s
′) ≤ max

k=1,...,N
sup
x∈Rk

|s(x)− s′(x)|

(iii) d̂lρ(s, s
′) ≤ max

k=1,...,N
d̂lρ(sk, s

′
k).

These results provide a quantification of epi-convergence of functions in lsc-fcns(IRn). However, we need

to go one step further and define epi-convergence of optimization problems defined over such functions.

We next provide a definition of epi-convergence of the approximate problems (P ν) to the actual problem

(P ). In view of the above results, these are problems defined on the metric space (lsc-fcns(IRn), dl) and

we therefore follow [3]:

A sequence {(P ν)}ν∈IN epi-converges to (P ) if
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Figure 12: Illustration of epi-convergence and pointwise convergence.

(i) for every sequence {sν}ν∈K , with K an infinite subsequence of the positive integers, sν ∈ F ν ∩Sν ,

and dl(sν , f) → 0, we have that f ∈ F and liminfν ψ
ν(sν) ≥ ψ(f);

(ii) for every f ∈ F , there exists a sequence {sν}∞ν=1, with s
ν ∈ F ν ∩ Sν , such that dl(sν , f) → 0 and

limsupν ψ
ν(sν) ≤ ψ(f).

The main consequence of epi-convergence in this context is the fact that it implies that solutions of the

approximate problems tend to those of the actual problem. Let V and V ν be the minimum values of

(P ) and (P ν), respectively. Specifically, by [3, Theorem 2.5],

if (P ν) epi-converges to (P ), sk minimizes (P νk), and dl(sk, f) → 0, then f is a minimizer

of (P ) and limk V
νk = V .

This result therefore provides a direct path to an answer to the earlier question whether a solution

of an approximate problem (P ν) would be an approximate solution of (P ): one needs to ensure epi-

convergence of (P ν) to (P ).

5 Theory

A series of results are available about the relationship between (P ν) and (P ) and their solutions as

well as between epi-splines and lsc functions. Results in the context of probability density estimation

are established in [22]. We refer to [21] for other cases with one-dimensional functions and [20] for

higher dimensions. Here, we give three central results dealing with epi-convergence of (P ν) to (P ), the

ability of epi-splines to approximate to an arbitrary level of accuracy any lsc function, and the rate of

convergence of corresponding solutions.

Epi-convergence. A sufficient condition for epi-convergence of (P ν) to the actual problem (P ) relies

on continuous convergence of the approximate criterion ψν to the actual criterion ψ. Often, ψν is simply
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identical to ψ for all ν. For the general case, we recall that ψν converges continuously to ψ relative to

F if for every f ∈ F and sequence {sν}∞ν=1, with s
ν ∈ F and dl(sν , f) → 0, ψν(sν) → ψ(f). We use the

notation intF to denote the interior of F ⊂ F (with respect to the epi-topology). We establish in [20]

that if

(i) ψν converges continuously to ψ relative to F

(ii) ∪∞
ν=1Sν is dense in F

(iii) F ν set-converge to F = cl(intF ),

then (P ν) epi-converges to (P ).

The first condition implies that ψ is continuous with respect to the epi-topology. The second condition

relates to the ability of epi-splines to approximate arbitrary lsc functions, which we address in the

next paragraph. The last part of the third condition is a constraint qualification that avoids “isolated”

feasible points that cannot easily be approximated. Numerous simplification occurs if F ⊂ e-splpn(R)

for some partition R and order p, which implies that both (P ν) and (P ) are finite-dimensional, as

discussed at the end of the section.

Approximation by epi-splines. To allow for approximation of arbitrary lsc functions, we consider

a sequence of partitions that are gradually refined. Specifically, we say that a sequence {Rν}∞ν=1 of

partitions of IRn, with Rν = {Rν
k}N

ν

k=1, is an infinite refinement if

for every x ∈ IRn and ε > 0, there exists a positive integer ν̄ such that

Rν
k ⊂ IB(x, ε) for every ν ≥ ν̄ and k satisfying x ∈ clRν

k.

A simple example of an infinite refinement on IR is to take Nν = 2ν + 2, Rν
1 = (−∞,−√

ν), Rν
k =

((k− ν− 2)/
√
ν, (k− ν− 1)/

√
ν) for k = 2, 3, ..., 2ν +1, and Rν

2ν+2 = (
√
ν,∞). Then ν̄ > max{x2, ε−2}

satisfies the above condition. Obviously, much flexibility exists in constructing such infinite refinements.

A main result in [20] is then that

for any nonnegative integer p and {Rν}∞ν=1 an infinite refinement on IRn,

∞
⋃

ν=1

e-splpn(Rν) is dense under the epi-topology in lsc-fcns(IRn).

Consequently, epi-splines, even those of order zero, can approximate to an arbitrary level of accuracy

any lsc function. The optimization over epi-splines in (P ν) is therefore justified.

Rate of convergence. Solutions of (P ν) tend to those of (P ) at rates that depend on several factors

and a full analysis along the lines of [5] and references therein is beyond the scope of this tutorial. Here,
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we consider the case in which F ⊂ e-splpn(R) for some partition R = {Rk}Nk=1 and order p, i.e., the

actual problem (P ) is finite dimensional. Of course, in view of the flexibility of epi-splines, there may

be little to lose from a practical perspective to adopt this simplification from the outset. In view of the

finite number of parameters describing an epi-spline, (P ) corresponds then to a parametric optimization

problem

Parametric Actual Problem (P̄ ) : min ψ̄(r) such that r ∈ R ⊂ IRne ,

where R is a feasible region corresponding to the constraint set F , ψ̄ is a criterion function expressed as

a function of the parameters r, and ne is defined in (1). If every s ∈ e-splpn(R) is of the form s = 〈c(·), r〉,
with r ∈ IRne and c = (c1, c2, ..., cne) a set of basis functions6 for the corresponding polynomials, then

ψ̄(r) = ψ(〈c(·), r〉) and R = {r ∈ IRne | 〈c(·), r〉 ∈ F}.

Similarly, a parametric optimization problem corresponding to (P ν) takes the form

Parametric Approximate Problem (P̄ ν) : min ψ̄ν(r) such that r ∈ Rν ,

where Rν = {r ∈ IRne | 〈c(·), r〉 ∈ F ν ∩Sν} and ψ̄ν(r) = ψν(〈c(·), r〉). We quantify next the relationship

between solutions of (P̄ ν) and (P̄ ).

We focus here on near-optimal solutions of (P̄ ν) that are indeed the solutions provided by numerical

solvers. A benefit of such an approach is that we avoid quantifying the “conditioning” of the problems’

near-optimal solutions; see [18, Section 7.J] for results in that direction. We therefore define the ε-

optimal solutions for (P̄ ν), which for ε ≥ 0, are given by

R̄ν
ε = {r ∈ Rν | ψ̄ν(r) ≤ V̄ ν + ε},

with V̄ ν being the optimal value of (P̄ ν). We also say that a function ϕ is Lipschitz on ρIB with constant

κ if

|ϕ(r)− ϕ(r′)| ≤ κ‖r − r′‖ for all r, r′ ∈ ρIB.

A quantitative approximation result can then be deduced from Theorem 7.69 and Example 7.62 in [18]:

Suppose that ψ̄, ψ̄ν are finite convex functions, R,Rν are closed convex sets, and ρ0 ∈
(0,∞) is such that there exists r, rν ∈ ρ0IB optimal in (P̄ ) and (P̄ ν), respectively, and

ψ̄(r), ψ̄ν(rν) ≥ −ρ0. Let ρ > ρ0, ρ
′ > d̂lρ(R,R

ν) + ρ, and assume that ψ̄, ψ̄ν are Lipschitz

on ρ′IB with constant κ. Then, for any ε > 0 and r0 optimal in (P̄ ),

d(r0, R̄ν
ε ) ≤

(

1 +
4ρ

ε

)[

max
r∈ρIB

{ψ̄(r)− ψ̄ν(r)}+ (κ+ 1)d̂lρ(R,R
ν)

]

.

We observe that an error between an optimal solution of (P̄ ) and R̄ν
ε originates from two sources: the

differences between the criterion functions ψ̄ and ψ̄ν and between the restrictions imposed through R

and Rν measured in terms of the d̂lρ-distance, now defined for arbitrary sets and not only epi-graphs.

6There are several possible basis functions with (1, x, x2, ..., xp) for each interval (mk−1,mk) furnishing one example on
IR; see (2).
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(a) (b)

Figure 13: Image reconstruction example: actual function (a) and epi-spline (b).

6 Examples

We provide numerical results for three gradually more complex examples. The first example estimates a

common test function from image reconstruction. The second example estimates the probability density

of simulation output. The third example forecasts electricity (load) demand on the basis of weather

predictions.

Image reconstruction. We consider the standard test function f(x) = (cos(πx1)+cos(πx2))
3 defined

on [−3, 3]2; see Figure 13(a). We rely on continuous epi-splines and a partition of [−3, 3]2 consisting

of 20 by 20 squares so that N = 400. Based on 900 uniformly distributed data points and the max

absolute error criterion, we obtain the epi-spline fit of Figure 13(b). Maximum and average errors across

the data points are 0.415 and 0.313, respectively. Mean square and mean absolute error criteria give

similar results. A relaxation of the continuity requirement results in essentially perfect interpolation at

the expense of a more “rugged” fit.

Simulation output estimation. Estimates of the probability density function of the output of sim-

ulation model provide a comprehensive picture of the performance of the system modelled. Although

kernel methods and other traditional methods of nonparametric statistics compute density estimates,

they rely heavily on large sample sizes and only in parts can account for external information, a preva-

lent factor in practical simulation studies. As laid out in [22], probability density estimation using

epi-splines offers the possibility to include an arbitrary collection of external information and thereby

achieve high-quality estimates even for small sample sizes.

For a sample X1,X2, ...,Xν that is independently and identically distributed according to an unknown

density, it is well-known (see for example [22]) that a constrained maximum likelihood estimator of the
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Figure 14: Density of queuing simulation.

density is an optimal solution of

max
1

ν

ν
∏

i=1

h(Xi)1/ν such that h ≥ 0,

∫

h(x)dx = 1, h ∈ H,

where H is an appropriately selected space of functions on IRn. Passing through the transformation

h = e−f , we arrive after equivalently maximizing the logarithm of the objective function of the problem

min
1

ν

ν
∑

i=1

f(Xi) such that

∫

e−f(x)dx = 1, f ∈ F ,

where, as above, we let F ⊆ lsc-fcns(IRn). Since this problem is infinite-dimensional, we formulate the

approximate problem

min
1

ν

ν
∑

i=1

s(Xi) such that s ∈ F ν ∩ Sν

over epi-splines, where Sν = e-splpn(R) ∩ F , as above, and F ν is a subset of functions satisfying
∫

e−s(x)dx = 1, but also satisfying other restrictions derived from external information. A solution s of

the approximate problem provides a density estimator through the composition e−s, where we observe

that the nonnegativity is automatically satisfied.

An example taken from [24] illustrates the possibilities. We consider an M/M/1 queue with arrival rate

λ = 1 and service rate µ = 1.5, but 50% of customers who enter the system are held at a separate

station for two time units before entering the queue. We wish to estimate the density of the customer
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time-in-service (TIS). The actual density is an equal mixture of the density corresponding to an M/M/1

queue without the holding station, which is exponential, and the same density shifted to the right by

two time units. The resulting density is discontinuous at two time units as half the customers will have

two time units added to their time in system; see the dotted line in Figure 14.

We assume that this detailed information about the density for customer TIS is unavailable and that

we must rely on 100 simulated customer TIS values as well as reasonable, external information. Of

course, in practice this is the common situation. We build a second-order epi-spline estimate by solving

the above approximate problem, under the external information that the customer TIS is nonnegative,

derivatives relative to density values are bounded (i.e., a bound on the pointwise Fisher information),

second-order derivatives are bounded, and the upper tail is log-concave. Using a mesh consisting of

N = 10 intervals, we obtain the estimate given by the solid line in Figure 14. The picture is representa-

tive of hundreds of draws of 100 simulated customer TIS. We also illustrate a standard Gaussian kernel

estimate. The stems indicate the 100 simulated customer TIS. The estimate based on epi-splines tracks

the actual density closely and, in contrast to the kernel estimate, captures its essence. From this and

similar examples in [24], we conclude that epi-spline technology provides a tool for analyzing simulation

output under a variety of external information. In particular, flexibility of this kind is important when

simulations are expensive and only a small sample can be made available. The burden then falls on the

external sources to provide information that can sharpen performance estimates and support decision

about the underlying system.

Electricity load forecast. A significant portion of electricity supply in the United States is provided

through “day-ahead” contracts, where producers agree to deliver certain quantities of electricity for

the next day. A central component of a market place for such contracts is forecasting tools for the

next day’s electricity load (demand). Such tools must necessarily rely on the information available

at the time of forecasting, which typically includes weather forecasts for the next day (temperature,

dew point, cloud cover, etc.) as well as historical information about electricity load on days that had

similar weather forecasts. Figure 15(a) shows temperature forecasts for five days in Boston in 2012,

with corresponding actually observed electricity loads on those days shown in Figure 15(b). Although,

the historical information may stretch decades back, the useful information is much more limited as the

data needs to be carefully segmented to ensure that only “similar” days are included; see [13, 14]. For

example, data for Mondays should not be mixed with those for Saturdays as the electricity load are

fundamentally different on the weekend, and data for hot days should not be mixed with those of cool

days. In the end, only about 15 to 25 days per year may remain and on which the forecast must rely,

making traditional techniques based on time-series or stochastic differential equations inaccurate. Here,

we briefly describe the epi-spline-based construction of a stochastic process of the next day’s electricity

load as laid out in [13, 14]; see also [16]. Epi-splines enter at three points. First, to help segment

the data, probability density functions are estimated using an approach similar to that described for

simulation output above. Second, a regression model builds an estimate of the “expected” load for the

full 24 hours of the next day. Third, conditional probability density estimates quantify the variability
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Figure 15: Temperature forecasts (a) and corresponding actual loads (b) for five days.
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Figure 16: Probability densities of errors during two hours of the day.

in the process. We here describe the two last steps only.

Suppose that there are J days of historical data on which to base the estimates. For each day j =

1, 2, ..., J , and hour h = 1, 2, ..., 24, of that day, we know the forecasted temperature tjh, the forecasted

dew point djh, and the actually observed load ljh. Additional weather statistics are also available, but

excluded here for simplicity of exposition. In any case, temperature and dew point forecasts appear to

suffice for the estimation of summer days [13, 14]. The regression model then takes the form

ljh = stmp(h)tjh + sdpt(h)djh + ejh,

where stmp and sdpt are epi-splines defined on [0, 24] and ejh is the error between the observed load

ljh and the predicted load stmp(h)tjh + sdpt(h)djh. We note that here the “coefficients” in front of the

explanatory variables “temperature” and “dew point” are functions of time. The regression problem is

then to determine epi-splines stmp and sdpt that

minimize

J
∑

j=1

24
∑

h=1

∣

∣

∣l
j
h − stmp(h)tjh − sdpt(h)djh

∣

∣

∣ ,

with the external information that the epi-splines are of second order, are continuously differentiable,

and have bounded second-order derivatives. Using the representation of polynomials in (2) and mesh-

points mk = k24/N , k = 1, 2, ..., N , partitioning [0, 24] into N intervals, we obtain that

stmp(x) = ak,tmp
0 + ak,tmp

1 x+ ak,tmp
2 x2, for x ∈ (mk−1,mk),

with continuity forcing the epi-spline on the mesh-points to be defined by the values at the adjacent

intervals; sdpt is defined similarly in terms of parameters ak,dpt0 , ak,dpt1 , and ak,dpt2 . Let m0 = 0. The

regression problem then takes the form of a linear program over those parameters as well as over the
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Figure 17: Regression load, with estimated uncertainty, and actual load.

auxiliary parameters zjh:

min

J
∑

j=1

24
∑

h=1

zjh such that

ljh − (ak,tmp
0 + ak,tmp

1 h+ ak,tmp
2 h2)tjh − (ak,dpt0 + ak,dpt1 h+ ak,dpt2 h2)djh ≤ zjh, h ∈ (mk−1,mk] (3)

k = 1, ..., N, j = 1, ..., J

−ljh + (ak,tmp
0 + ak,tmp

1 h+ ak,tmp
2 h2)tjh + (ak,dpt0 + ak,dpt1 h+ ak,dpt2 h2)djh ≤ zjh, h ∈ (mk−1,mk] (4)

k = 1, ..., N, j = 1, ..., J

ak,tmp
0 + ak,tmp

1 mk + ak,tmp
2 m2

k − (ak+1,tmp
0 + ak+1,tmp

1 mk + ak+1,tmp
2 m2

k) = 0, k = 1, ..., N − 1 (5)

ak,tmp
1 + 2ak,tmp

2 mk − (ak+1,tmp
1 + 2ak+1,tmp

2 mk) = 0, k = 1, ..., N − 1 (6)

−κ ≤ ak,dpt2 , ak,tmp
2 ≤ κ, k = 1, ..., N (7)

The inequalities (3) and (4) linearize the criterion function, (5) and (6) ensure continuity and continuous

differentiability requirements (see §3.3), and (7) bounds the magnitude of the second-order derivatives

to κ. In [14], N = 24 and κ = 500. A slightly more complicated version with weighted errors is also

possible.

The regression curve can be viewed as the drift of the stochastic process that forecasts the electricity
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load. The next step is to determine the volatility of the process. For a fixed hour h, we can interpret

the minimized errors {ejh}Jj=1 as the observations associated with the distribution of these errors. Using

the epi-spline-based procedure for estimating probability densities described above, it is then possible

to estimate this distribution. Since the number of observed errors will be limited, it becomes especially

critical to include external information to ensure quality estimates. We can repeat this process for each

hour h independently, but that would not take into account conditioning. Clearly, if the load at hour

h is substantially higher than the load tentatively projected by the regression curve, one should take

this into account when looking at the distribution of the errors at a later time h + △h. This can be

done systematically by restricting the samples of the error at time h + △h to those that come from

(observed) load trajectories that at time h had similar deviations from the overall drift of the process,

i.e., from the regression curve; see [13, 14, 16] for details. Since this limits the number of data point on

which a single density estimate must rely, the significance of being able to include external information

in the epi-spline framework is further highlighted.

Extensive numerical results are provided by [13, 14] for case studies covering the New England region

of the United States. Figure 16 from [13] illustrates two epi-spline-based estimates of the probability

density function of errors at hours h = 6 and 17 on a particular day. For a day with high variability in

electricity load taken from [14], Figure 17 gives an example of estimated loads in 2011 in Connecticut

according to the regression model (line with circles), the associated uncertainty given in terms of

alternative scenarios (lines with solid dots), and the actual load (line with squares). It is clear that the

constructed stochastic process covers the actual load to a high degree. Table 1 taken from [14] shows

aggregated forecasting error statistics in terms of mean average percent forecasting errors from actual

loads for different seasons and numbers of segments used in the procedure for segmenting the data

into clusters of “similar” days. We find that regardless of the season, the forecasting errors are small,

especially under an intelligent segmentation of the data. The epi-spline-based forecasting method of

[13, 14] is currently being implemented by an independent software provider, with planned adoption by

the New England Independent System Operator to support daily planning in 2014.

Numbers of segments
Season 1 3 5 7

Fall 5.45 4.66 4.2 3.99
Spring 3.1 2.88 2.67 2.73
Summer 10.25 4.82 4.14 4.19
Winter 5.25 3.32 3.29 3.47

Table 1: Mean average percent forecasting error in electric load forecast.
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